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FUNDAMENTALS OF ROC ANALYSIS
Charles E. Metz, Ph.D.
Professor of Radiology

The University of Chicago

1. INTRODUCTION

From a practical point of view, an image is "good" only to the extent that it serves as a
useful tool when it is applied to a particular task. Therefore, the quality of an imaging
procedure in diagnostic medicine depends upon the quality of the medical decisions that can be

made with it.

In the broadest sense, the value of a particular diagnostic imaging procedure depends upon
the benefit of that procedure to society as a whole; not only the risks and financial costs of the
procedure but also the availability of therapies and alternative diagnostic techniques must be
taken into account. While this very general perspective addresses the ultimate concern, it does
not provide an immediately practical basis for making measurements of image quality.

Therefore, we must restrict our attention to a narrower definition of medical image quality.

Knowledge of each patient's state of health or disease is not a sufficient condition for
effective medical care, but almost always it is a necessary condition for such care. Therefore,
the quality of a medical imaging procedure can be defined and measured meaningfully in terms
of the extent to which image-based diagnoses agree with the actual state of health or disease of
each patient. At present, medical images must be interpreted by human beings, so an
acceptable measure of image quality must take the abilities and limitations of human observers
into account. Also, an acceptable measure of image quality must be stazistical: it must describe

both the typical characteristics and the variation of images and image readings. A committee of



the International Commission on Radiation Units and Measurements (ICRU) is currently
drafting a report that will discusses this practical approach to image quality and will recommend

specific techniques that can be used to implement it.

For simplicity, the evaluation of diagnostic decision performance usually is restricted to
situations in which the truth concerning patients is divided into two states (such as "abnormal"
versus "normal," "disease X present" versus "disease X absent,” etc.) and in which two
corresponding decisions can be made. The adequacy and limitations of this restriction have
been discussed in the literature (Metz, 1986a). Often the two states are indicated by the abstract
words "positive” and "negative" to denote a defined state of truth and its compliment. In
studies that seek 10 measure medical image quality, these two states can be selected by the
designer of the experiment to represent alternative diagnoses, the presence and absence of some
diagnostically relevant image feature, or the presence and absence of an idealized geometric
object. Images of actual clinical cases, images of phantoms, or images generated by computer
can be used in the experiment, depending on the compromise between realism and convenience

that is considered appropriate.

2. INADEQUATE MEASURES OF IMAGE QUALITY

The physical characteristics of many imaging systems can be described in terms of spatial
resolution (by the Optical Transfer Function), noise magnitude and texture (by the Wiener
spectrum), and contrast transfer (by the sensitometric curve). Knowledge of these
specifications of the imaging system allow the physical properties of the image any object to be
calculated. However, the quality of the medical decisions that an imaging procedure allows
usually cannot be predicted from knowledge of the physical properties of the images, because
the complex process of human visual perception is poorly understood. Someday in the future

it may become possible to develop reliable models for visual detection and recognition that will



3. THE ROC CURVE

The fact that both Sensitivity and Specificity depend upon the observer's setting of his
critical confidence level might seem to be a serious problem, because different observers
usually set their critical confidence levels differently, and because the particular level-settings
that an observer adopts cannot be measured or controlled. However, we can obtain a fully
adequate measure of diagnostic performance if we acknowledgement this effect and use it to
our advantage. In fact, all of the limitations of the various measures of diagnostic performance
that I have mentioned up to this point are overcome if we measure all of the combinations of
Sensitivity and Specificity that an observer can produce when he uses the set of images to be
evaluated for particular two-alternative decision task, One of these indices can then be plotted
as a function of the other. More commonly, "True Positive Fraction" (TPF), which is
equivalent to Sensitivity, is plotted against "False Positive Fraction" (FPF), which is equal to
1.0 — Specificity, thereby producing a "Receiver (or Relative) Operating Characteristic"

(ROC) curve (Green and Swets, 1966; Metz, 1978; Swets and Pickett, 1982).

ROC curves rise from the lower-left corner of the unit square, bend to the right with
decreasing slope, and finally enter the upper-right corner of the square. High ROC curves
represent better detection performance than low ROC curves, because appropriate settings of
the decision criterion on a higher ROC produce a larger TPF for any given FPF, and a smaller
FPF for a given TPF. Therefore, if ROC curves of interest do not cross, detection
performance can be summarized by the "area index" A,, which represents the area under an
ROC inside the unit square (Swets and Pickett, 1982; Metz, 1986a). Alternatively, ROC
curves can be compared in terms of the TPF values they provide at a particular FPF of practical

interest (Swets and Pickett, 1982; McNeil and Hanley, 1984).



4. SELECTION OF CASES AND OBSERVERS FOR AN EVALUATION STUDY

The detectability of a lesion in an image obviously depends not only upon the physical
properties of the imaging system, but also upon the size, contrast, etc. of the lesion in question
and upon the characteristics of background structures that are (or may be) present in the image.
More generally, the ability of an observer to discriminate visually between two classes of
objects or "cases" depends upon the subtlety of the differences between the two classes of
cases in question. Therefore the ROC curve that is measured with a set of images -- and so,
according to our practical definition of image quality, the guality of those images -- depends not
only upon the physical properties of the images, but also upon the particular actually positive
and actually negative cases (in other words, phantoms, patients, etc.) from which the images

were made.

At first, this dependence may seem confusing and undesirable, but in fact it is consistent
with the common observation that different imaging systems may be best in depicting different
classes of scenes and in different decision tasks. Similarly, image quality as we define it here
depends upon the skill of the observer who reads the images, but this dependence also is
appropriate, because different imaging systems may be best when used by observers with
different training or experience. Ideally, all observers who perform a particular image-reading
task would possess the highest level of skill that is humanly attainable; in reality, however,

images are read by observers with diverse skills.

Because the results of an image-evaluation study generally depend upon the cases and
observers that the study employs, care must be taken to ensure that those cases and observers
are selected appropriately. It is important to recognize that sampling issues must be addressed

in any evaluation study, and that ROC methodology is no more demanding in this regard than



other methods of analysis that provide less meaningful descriptions of detection performance

(Metz, 1986a).

In designing a visual-detection experiment for the evaluation of image quality, one must
decide first whether an absolute measure of the detectability of some class of diagnostic
features or some particular disease is desired, or whether the goal is more simply to rank
alternative imaging procedures (Metz, 1989). The sampling issues that must be confronted in

these two kinds of experiments can be quite different.

4.1 Absolute measurements of detection performance

Reliable absolute measurements of disease detectability in a defined patient population are
often extremely difficult to obtain, in part because the sample of patients included in the study
must accurately reflect the population of patients at large about which conclusions are to be
drawn. Therefore, many sources of potential bias must be taken into account (Begg and
McNeil, 1989). For example, an experiment that attempts to measure the absolute detectability
of lung nodules by chest radiography must ensure that the distribution of nodule sizes is the
same in the study sample as in the defined population of interest, because the detectability of a
nodule depends on its size. "Stratified sampling" techniques (Kendall and Stewart, 1976) have
not yet been used formally in medical imaging but may prove useful for reliable absolute
measurements of system performance. In the detection of lung nodules, for example, these
techniques can help to ensure that an appropriate distribution of nodule sizes is used in a study

(Metz, 1989).

The absolute detectability obtained in medical imaging depends not only upon the difficulty
of the cases, but also upon the experience and skill of the observers who read the images;

experienced mammographers have been shown to perform better than general radiologists in



using xeromammograms to discriminate between malignant and benign breast lesions (Getty et
al, 1988), for example. Therefore, if reliable absolute measurements of detectability are to be
obtained from a medical imaging study, the relevant population of observers must be defined,
and the sample of observers employed in the study must accurately represent that population.
Similarly, to measure accurately the absolute detectability of disease that would be obtained in
routine clinical practice, the conditions under which images are read in the study (such as the

amount of reading time, the ambient light level, etc.) must represent those that would be used

in clinical practice.

4.2 System-ranking studies

Studies that attempt only to rank the quality of imaging systems are often much more
straightforward. Sampling considerations still require attention in the study design, but now
the only requirement is that these factors do not affect the ranking of the systems; their effects
on absolute detectability are no longer of primary concern. The key need becomes one of
ensuring that a system which would provide superior diagnostic performance in its real-world
application is found better in the study, and that two systems providing equivalent performance

in the real world are found equivalent by the study.

An individual who designs this second kind of study has greater freedom in choosing the
cases it will employ. A basic question that often arises in designing a system-ranking study
concerns the most appropriate level of case difficulty. Common sense suggests correctly that
not all of the cases should be extremely easy, because then even a very poor imaging system
would perform well. But should the cases cover a broad spectrum of difficulty to represent
cases at large; should they be restricted to "subtle" cases; or should they be so challenging that
even the best system finds them quite difficult? The answer depends in part on the statistical

properties of ROC indices.



If the difficulty of cases in a particular diagnostic task depends primarily on only one
factor, such as lesion size, and if we may assume that a system which is better in detecting
small lesions will be better in detecting large lesions also, then the question at hand is reduced
to one of choosing the best lesion size, or range thereof. If a single lesion size is to be
employed in a system-ranking study, it should be chosen to maximize the difference between
the expected values of the ROC index used to summarize performance, relative to the
uncertainty in that difference -- in other words, to maximize the statistical power of the
experiment. No formal guidance is available as yet concerning this choice, but a reasonable
rule of thumb when the ROC area index, Ag, 1s used seems to be that the average of the A,
values of the two modalities should lie near 0.80 (Metz, 1989). For example, if lesion size is
the primary determinant of detectability with each system, then a pilot experiment involving the
two systems and several lesion sizes should be performed to determine approximately the
lesion size that achieves this average level of performance. A range of lesion sizes distributed
around this optimal size may be employed in the definitive experiment if that is considered
desirable for "realism," but we must recognize that each lesion with a size substantially

different from the optimal value will make a smaller contribution to statistical power.

Unfortunately, the task of selecting appropriate cases may not be so simple even for a
system-ranking experiment if the detectability of the disease of interest depends strongly on
two or more distinct image features, such as soft-tissue masses and microcalcifications in the
detection of breast cancer by mammography. Some of the subtle issues that must be

confronted in this situation are discussed elsewhere (Metz, 1988a).
4.3. Establishing diagnostic truth

All objective techniques for the evaluation of observer performance measure the agreement

between the observers' decisions and some external standard of truth; therefore, the true state
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of each case in an objective image evaluation study must be known. In evaluation studies that
employ phantom images or computer-simulated images, the experimenter knows the actual
state of each case because he/she controls it. The results of such studies may be reliable, in the
sense that they can be reproduced, but often they are unrealistic, in the sense that the phantoms
or computer simulations from which the study's images were made do not adequately represent
the complexity of real patients and their images. Therefore, even the most carefully performed
phantom and computer-simulation studies may leave doubt concerning whether similar results

would have been obtained with real patients and images.

Unfortunately, the establishment of diagnostic truth in clinical studies is usually difficult,
both in principle (because "truth" is ultimately a philosophical matter) and in practice (because
great effort may be required to determine the actual state of health or disease in a particular
patient at a particular point in time "beyond a reasonable doubt"). But despite these difficulties,
carefully designed clinical ROC studies can be done, and useful conclusions can be drawn

from them; for example, see reports listed by Swets and Pickett (1982) and by Metz (1986a).

Important issues that must be confronted in establishing truth in clinical evaluation studies
have been reviewed by a number of authors (Ransohoff and Feinstein, 1978; Swets and
Pickett, 1982; Metz, 1986a; Begg and McNeil, 1988). Particular attention must be focused on
biases that may be caused by the omission of clinical cases for which truth is particularly

difficult to establish (Ransohoff and Feinstein, 1978; Gray et al, 1984).

5. READING-ORDER EFFECTS

When two or more images of a particular patient are read by the same observer, the image
read last will tend to be interpreted more accurately than the image read first if any relevant

information is retained by the observer from a reading of one image of the patient to the next.



Therefore, if all of the images of a patient sample made with modality "A" are read before any
of the images of the same patient sample made with modality "B," the results of the study will
be potentially biased in favor of modality "B." Biases of this kind, called "reading-order
effects," must be avoided in evaluation studies that use a single case sample to compare two or

more imaging systems.

There are two methods by which biases due to reading-order effects can be reduced or
eliminated; the common theme is to vary the order in which the modalities' images are read so
that reading-order effects tend to cancel out. In the first method, the order of the modalities is
varied across observers; thus, the ranking of the modalities remains potentially biased for
individual observers, but any such bias tends to cancel across observers. The second method,

which requires more complicated experimental designs, attempts to cancel the bias within each

observer's results by breaking the case sample into several subsets and having each observer

read the modalities in a different order for each subset (Metz, 1989).

6. ROCDATA COLLECTION

ROC curves that describe image quality can be measured in two ways. With the "Yes/No"
method, the observer reads each image in a set of images as "positive” or "negative." He then
rereads the set of images several times in different reading sessions, using different settings of
his critical confidence level to distinguish "positive" image readings from "negative" readings.
For example, the observer would read the images "conservatively" in one session and
"aggressively" in another session. The data analyst can estimate one point on the ROC from
the results of each reading session by comparing the image readings with the actual presence

and absence of the disease or image feature in question. However, this method is extremely



inefficient, because it requires M readings of each image to estimate M points on each ROC

curve.

In practice, visual-detection ROCs are almost always measured by obtaining "confidence-
rating" data that represents the observer's relative confidence that each image was produced
from an actually positive case. When these graded judgements are reported on a K-category
scale, K-1 points on the ROC can be estimated from a single reading of each image (Green and
Swets, 1966; Metz, 1978, 1979, 1986a). Usually a confidence-rating scale with five or six
categoﬁcs is employed, thereby yielding estimates of four or five points on the ROC in addition
to the lower-left and upper-right corners of the unit square, into which every conventional ROC
must pass. A larger number of confidence-rating categories would be desirable in principle,

but in practice many observers find it difficult to grade subjective judgements on finer scales.

Discrete confidence-rating categories usually are assigned verbal labels such as "definitely

"o "ot

or almost definitely positive," "probably positive," "possibly positive," etc. to ensure that each
observer uses the categories in a strictly ordered fashion. The way in which these labels may be
interpreted by an observer does not bias the measured ROC as long as the observer's relative
confidence in the two states of truth varies monotonically across the categories (Metz, 1936a).
However, for statistical efficiency and to guard against "degenerate” data sets (Metz, 1989), it
is desirable for the confidence ratings to yield ROC points that are more-or-less uniformly
spread along the curve. When approximately half of the images in an experiment are actually

positive, this is accomplished if the observer uses the categories with roughly equal

frequencies.

Clinical images can be read either with or without case-history information, and with or
without the results of other tests that would precede the imaging test in real-world applications,

depending on the goals of the evaluation study (Metz, 1986a). Similarly, clinical images can



be read either sequentially in controlled reading sessions or one at a time in the course of daily
clinical practice. However, when the confidence-rating method is used in a controlled
experiment, a brief training session should be held immediately before each image-reading
session in which data will be acquired. In each of these training sessions, the observer should
be shown a spectrum of cases that represents the range of decision difficulty that will be
presented during data acquisition, and he/she should be motivated to use the confidence-rating
categories in a way that will produce a roughly uniform spread of points along the ROC curve.
Also, the observer must be made to understand that he/she should strive to use the rating scale
in a constant way during data acquisition, because variation in use of the scale degrades
decision performance (Goodenough and Metz, 1977; MacMillan and Kaplan, 1985). The
cases that are presented during the training session should be typical of, but must not include,

those that will be read during data acquisition.

7. ROC CURVE FITTING

After a set of confidence-rating data has been obtained, we are faced with the task of fitting
a continuous ROC curve to those data. Objective curve-fitting methods require that some
mathematical form be assumed for the ROC curve. Many functional forms have been proposed
(Egan, 1975; Swets, 1986a), but the "binormal" form has been used most widely in medical
imaging. According to the binormal model, which includes two adjustable parameters, each
ROC is assumed to have the form that would be produced by two "normal” (Gaussian)
decision-variable distributions with generally different means and standard deviations (Green
and Swets, 1966; Egan, 1975; Swets, 1979). It is important to notice that any monotonic
transformation of a decision variable changes the distributions that underlie the ROC but not the
ROC itself; therefore, the binormal assumption concerns only the functional form of the ROC

curve, which always can be examined empirically, and not the form of the underlying



distributions, which cannot be determined in many applications of ROC analysis (Metz,

1986a).

Empirically, the binormal form has been found to provide satisfactory fits to ROC data
generated in a very broad variety of situations (Swets, 1986b), and it has the convenient
property that all possible ROC curves are transformed into straight lines if they are plotted on

"normal-deviate" axes (Green and Swets, 1966; Swets, 1979).

The two adjustable parameters of a binormal ROC can be taken to be the vertical-intercept
and the slope of the straight line that represents the ROC when it is plotted on normal-deviate
axes. These two parameters, usually denoted by "a" and "b", can be interpreted in terms of an
effective pair of underlying Gaussian distributions as the distance between the means of the
two distributions and the standard deviation of the "actually negative" distribution,
respectively, with both expressed in units of the standard deviation of the "actually positive"
distribution. Alternative ways of parameterizing a binormal ROC curve have been described by

Swets (1979).

With the binormal model, the task of curve fitting becomes one of choosing numerical
values for the {a,b} parameter pair to best represent the measured data. Conventional least-
squares methods are not appropriate because the assumptions underlying those methods are not
valid for ROC data; instead, maximume-likelihood estimation should be used (Metz, 1986b).
Maximum likelihood algorithms for ROC analysis are readily available (Dorfman and Alf,
1969; Grey and Morgan, 1972; Metz et al, 1984, 1985; Swets and Pickett, 1982) and provide
not only estimates of the parameters of the best-fit ROC curve, but also estimates of the

uncertainties in those parameters (Metz, 1986b).
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8. STATISTICAL TESTS FOR DIFFERENCES BETWEEN ROC CURVES

Now I shall mention briefly a variety of issues that arise in testing the statistical
significance of differences between ROC curves estimated from confidence-rating data. The
details of these issues have been discussed in publications by McNeil and Hanley (1984) and
by Metz (1986b, 1989).

Before selecting a statistical test, we must answer at least three distinct questions :

(1) In what sense should a difference between two ROC curves be quantified in the
particular situation at hand?

(2) Are the estimates of the ROC curves of interest statistically independent or are they

potentially correlated?
and

(3) Was each ROC curve of interest measured from one or from more than one reading of
each image?

The answers to these questions determine the test (or tests) that can be used to evaluate the

statistical significance of an apparent difference between measured ROCs.

8.1. Ways in which differences between ROCs can be quantified

The null hypothesis that we must use to evaluate the statistical significance of a difference
between two ROCs is dictated by the way in which we want to quantify the difference. In
general, the most appropriate null hypothesis depends on the way in which the two imaging

systems will be employed in practice.



One approach, which can be addressed with a Chi-square test (Metz and Kronman, 1980;
Metz et al, 1984; Metz, 1986b), considers the null hypothesis that two sets of rating data arose
from gxactly the same binormal ROC curve. This null hypothesis of identical ROCs may be
unnecessarily strict in some evaluation studies, however. For example, in practice we may not
care whether the two imaging systems yield exactly the same TPF at all possible FPFs, but
instead we may wish only to compare the TPFs of the two systems at a particular FPF of
clinical interest -- FPF = 0.10, say. Then the null hypothesis of "no difference" would
correspond to the condition that the two ROCs have equal TPFs at FPF = 0.10, and it could be
addressed by an appropriate univariate z-score test (McNeil and Hanley, 1984; Metz et al,
1984; Metz, 1986b). Alternatively, we might be willing to consider two systems equivalent in
clinical practice if they yield the same average value of TPF for FPFs ranging from 0 to 1 -- in
other words, if the two systems' ROC curves have the same area (A ;) beneath them when they
are plotted on conventional axes (Metz, 1986a). This null hypothesis can be addressed by
other univariate z-score tests (Swets and Pickett, 1982; Hanley and McNeil, 1982, 1983;

McNeil and Hanley, 1984; Metz et al, 1984; Metz, 1986b).

The three null hypotheses that I have mentioned are not equivalent, because ROCs can
cross. Thus, for example, the two true ROCs in question may have equal areas beneath them
yet be different curves, with different TPFs at all FPFs except one; or the true ROCs may have
the same TPF at the FPF of interest, but be different curves and have different areas. Perhaps
surprisingly, the results of the three statistical tests can disagree fairly frequently even when the
ROCs are identical, and the null hypothesis of the "A," test and/or of the "TPF" test can be
rejected even when the null hypothesis of identical ROCs is accepted (Metz, 1989)! Therefore,
it is important to select the most pertinent null hypothesis and a corresponding test before
statistical testing is begun, and to then perform only that single test. If multiple tests are

performed, conflicting conclusions may be drawn at best, and at worst a highly significant



difference will be found after enough tests have been done -- even when the ROCs of the two

systems are, in fact, identical.

8.2. Independent versus correlated ROC estimates

If estimates of two ROC curves are statistically independent, then no matter how the
difference between the ROCs is quantified, the statistical variability of the difference depends
only on the variabilities of the individual ROC estimates themselves. Several relatively simple
significance tests apply to this situation (Metz and Kronman, 1980; Hanley and McNeil, 1982;
Metz, 1986b).

When the estimates of the two ROC curves are not independent but instead tend to vary
above and below their means together -- for example, because a case sample that is atypically
difficult for one imaging system tends to be atypically difficult for the other as well -- then the
difference between the ROC estimates will vary less than it would if the estimates were
independent. Therefore, the statistical power of a system-ranking study can be increased by
applying both systems to the same case sample. Increased statistical power will be achieved
only if the covariance of the two ROC estimates is estimated by some means and then factored

into the statistical test, however.

For comparisons in which each ROC is estimated from a single reading of each image, this
can be accomplished by basing statistical tests on a "bivariate binormal” model (Metz et al,
1984, Metz, 1986b) that generalizes the conventional binormal model which underlies
conventional ROC curve-fitting algorithms such as RSCORE II and ROCFIT. An alternative
approach (Hanley and McNeil, 1983) can be used when the trapezoidal-rule approximation of

the ROC area index is considered adequate.
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8.3. Differences between ROCs estimated from multiple readings of each image

For simplicity, my discussion up to this point has focused on ROC curves that are
measured from a single reading of each image. However, in many experiments cach image
from each modality is interpreted by more than one observer, and perhaps more than once by
each observer. The advantage of multiple readings is fairly obvious: the effect of "between-
reader” differences in skill is "averaged out" across the observer sample, and the effect of
"within-reader" variation is reduced by each reader's replication. Much less obvious,
unfortunately, are ways in which the variation-reducing effects of multiple readings can be

taken fully into account in statistical tests for differences in modality performance.

Swets and Pickett (1982) have described a general model for variation in the difference
between two area indices, A, measured with multiple readings of each image; it applies
equally to any univariate difference between ROC indices. This model includes terms that
represent the "case-sample" variation, "between-reader” variation, and "within-reader”
variation that I have mentioned, together with correlation coefficients that account for the
effects of matching readers and cases across modalities. The model shows clearly how the
power of a statistical test for ROC differences is affected by the numbers of readers and
readings in a multiple-reading experiment, and it prescribes a procedure for performing such a
test. Swets' and Pickett's approach is the the most comprehensive one formulated to date, and
in principle it is adequate for statistical analyses of data from most multiple-reading ROC

experiments. The method is somewhat complicated, but it should be used whenever possible.

Of alternative techniques, the conventional "t-test for paired data" is clearly the simplest.
This method can be employed whenever several readers interpret the images from both of two
modalities. The test involves: (i) fitting an ROC individually to each reader's confidence-rating

data for each modality, and extracting a univariate index (such as Az) from each fitted curve;



(ii) calculating, for each reader, the difference between the index values for the two modalities;
and (iii) using Student's "t" statistic to test the null hypothesis that the population mean of the
resulting list of differences is equal to zero. This statistical test accounts fully for the effects of
"between-reader” and "within-reader” variation, but its statistical power is governed strongly
by the number of readers in the experiment (which determines the number of degrees of
freedom of the t statistic), and it does not account for "case-sample" variation at all. The latter
limitation may be acceptable with large random case samples and/or with small but carefully
selected case samples that can be assumed to be representative, but with small random samples

or small loosely selected samples it should be accepted only with great caution.

9. GENERALIZATIONS OF ROC ANALYSIS

As I mentioned earlier, conventional ROC analysis is limited to situations in which
possible truth can be divided into two states and two corresponding decisions are available to
the observer. Several generalizations of conventional ROC analysis have been proposed to

overcome this limitation.

"Location ROC" (LROC) analysis (Starr et al, 1975) measures the ability of an observer
not only to decide between the presence or absence of a single abnormality in an image, but
also to localize that abnormality when it is present. Swets and Pickett (1982) have suggested
that LROC analysis can be used also to measure the ability of observers to detect and classify
single abnormalities; the measured curve is then called a "joint" ROC. A generalization of the
LROC approach called "Free-response operating characteristic” (FROC) analysis applies to
situations in which a particular kind of abnormality may be present at more than one location in
an image and the observer is required to detect the presence of the abnormality at gach of its
locations (IAEA, 1977; Bunch et al, 1977). For experiments that seek to measure the

detectability of lesions, FROC analysis can be more efficient than ROC or LROC analysis



because it allows more than one lesion to be be included in each image, thereby reducing the
number of images needed to estimate reliably the probability (at each decision criterion) of

detecting a lesion when it is actually present.

Unfortunately, LROC analysis and FROC analysis share two substantial practical
limitations: no formal curve-fitting procedures and no generally applicable statistical tests for
differences in performance have been developed. Thus, at present, neither LROC nor FROC
analysis can be recommended broadly. Hope does exist for overcoming these limitations,
however (Metz, 1989). In particular, a method for fitting FROC curves on the basis of an ad
hoc but apparently reasonable model was proposed recently by Chakraborty (1989); although

at present this method has not been fully tested, it may prove useful.

10. CONCLUSIONS

A review of the advantages and limitations of the various techniques used to assess
diagnostic performance suggests that ROC analysis provides the most meaningful approach in
most situations. Only ROC analysis distinguishes between the inherent diagnostic capacity of
radiologists' image interpretations, on one hand, and any tendencies that they may have to
"under-read" or "over-read," on the other. ROC techniques have been used successfully to
assess the performance of a broad variety of radiologic imaging procedures in diverse

diagnostic tasks.

Although the practicality of ROC methodology sometimes has been questioned on the
grounds that it requires diagnostic truth to be established in "large" numbers of patients,
diagnostic truth and statistically significant sample sizes are requirements of any objective
method. Recent research on the statistical properties of ROC indices indicates that essentially

similar sample sizes are required to achieve adequate statistical power with most "traditional”



measures of diagnostic performance and with ROC analysis. Misconceptions regarding the
relative difficulty of ROC methods may be due to the unfortunate fact that issues of diagnostic
truth, potential biases, and statistical power have not always been given appropriate attention in
more traditional approaches. The inherently statistical foundations of ROC analysis force us to
iace those issues, however -- not only in assessing ROC methodology, but also in reassessing
more familiar techniques. A balanced overview suggests that ROC methodology is no more
demanding in most situations than other methods of analysis that provide less complete

descriptions of diagnostic performance.
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