
 
GENERAL DESCRIPTION 
The following document contains the definition of various functions and how they 
can be called from an external program after they have been compiled. Calls from 
different platforms/environments/compilers are suggested: the list is of course 
not exhaustive. We recommend users to run the command "nm" or something equivalent 
to it on the compiled library to determine what is the exact name mangling used by 
the compiler that made the library. The mangling reported here was observed with 
gcc-4.1 to gcc-4.3. 
We are referring explicitly to dynamic linked libraries, shared objects and run-
time libraries (referred to .dll on windows, .so on Apple OSX and Linux -- 
examples of names are: libroc.so, roc.dll and so on); other types of libraries can 
in principle be constructed from static libraries (.a) to other slightly less 
known entities. We will not be discussing in detail the nature of such entities.  
 
The list is not exhaustive, which means that many more functions are actually 
available from our libraries than the ones described here. The list is updated and 
with time more descriptions will be included. 
 
When discussing a decision-variable to be used to plot an ROC curve, it is 
important to define which is the "direction" that we expect to "correlate" with a 
signal being present, also known as positivity; here it is always assumed to be 
for larger values, unless stated otherwise.  
 
 
DESCRIPTION OF VARIABLES AND OTHER NUMERICAL ISSUES 
 
Floating point variables, called reals or doubles, are coded in our routines as 
floating point IEEE T_floats.  
integer, parameter :: double = selected_real_kind(p=15) ! IEEE T_float +- < 
10^308, 15 digits 
While we have in principle S_floats, we never found a reason to use them. 
 
Integers are defined simply using the declaration integer as they are less  
critical in terms of interfacing (integers create only problems, 
and rarely, during summation of many terms and mostly to people who don't know how 
to program). 
We have never found any issues associated with their use in this form. 
 
Complex numbers are not used in these libraries. 
 
Characters are used only internally, because we could not find a way to utilize 
them consistently across multiple operating systems and 
computational enviroments (e.g., R, SAS, IDL, Matlab). 
 
Arrays should be handled with care, as not all environment store or represent them 
in the same way; our examples should be sufficient to 
understand how to use them. 
 
Pointers are for the most part avoided explicitly and used implicitly (with the 
exception of the Java libraries, not described here). 
The reason again is portability; we found it to be too difficult to have a working 
version for all systems. 
 
Generally the procedures produce essentially the same output (within prespecified 
numerical accuracy) on all operating systems. 
 
 



GENERAL SYNTAX 
 
function_name -> it is the name of the function as appears after the mangling 
produced by the compiler. It can be found, for example, but 
doing (OS X command line or Linux/Unix or Windows from a Command shell where the 
appropriate functions have been installed): 
nm library_name | grep <name before mangling> 
 
E.g., for libraries built using gcc-4.1.1 on Linux. 
 
% nm libroc.so | grep auc_pbm 
00000000000242bf T __proproc_functions__auc_pbm 
 
At the end of the description of each function there is a section with a 
pseudocode description of the call. In that description it is explicitly stated 
which are the calling parameters that are input and which are output. 
 
PBM -> proper binormal model 
CvM -> conventional binormal model 
nonparametric -> non-parametric model (e.g., some statistic usually called with 
one of the following names proportion, U-statistic, Wilcoxon, Mann-Whitney) 
 
AUC -> area under the roc curve 
pAUC-> partial area under the ROC curve 
TPF -> true positive fraction 
FPF -> false positive fraction 
 
When a variable is defined as "intent(IN)" it needs to be defined on call, if it 
isn't it might result in an error message or an exception or at the very least 
produce the wrong answer. We are using for this Fortran 90 syntax, which is for 
the most part the language used to code the calculations described here. 
Intent(out) on the other hand means that the variable is an output. 
 
error general coding: 
0 -> operation concluded successfully (might still be wrong, but the calculation 
passed our tests and appears correct) 
-1 -> input is unacceptable, e.g., parameters out of bounds, negative variances, 
negative number of cases and so on 
+1 -> fit failed 
We use numbers because they appear to be the only approach that is stable across 
platforms and operating systems. 
 
We decided to code all these procedures as Fortran subroutines because "R" and 
many other environments cannot handle how a fortran function returns the result of 
its execution. 
 
Most of the calling syntax is defined from R, we assume that the user will be able 
to determine the correct calling scheme for their specific language and operating 
system. 
Only dynamically linked library type libraries will be discussed here. 
 
R requires variables to be initialized in some way before utilizing them. this is 
why in some descriptions we associate directly a number 
with these calls. To the best of our knowledge these procedures work more or less 
as well with SAS and other statistical manipulation 
software (or IDL or Matlab). Instructions about how to use them from those 
environments are available elsewhere. 
 



 
 
CURRENTLY THERE ARE FOUR GROUPS OF METHODS/PROCEDURES:  
-VERIFICATION/IMPLEMENTATION, 
-INDICES CALCULATION,  
-PLOTTING, AND  
-ESTIMATION 
 
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 
HOW TO USE THE LIBRARIES: 
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 
 
EXAMPLES FOR HOW TO LOAD THE LIBRARIES 
 
R: 
 
din.load(<file_location>/libroc.so) #Should that be dyn.load? 
e.g., (my macintosh): dyn.load("~/ROC/FORTRAN_LIBS/SPECIAL_LIBS/libroc.so") 
 
C++, to be used by program TestGetAzValue: 
 
e.g., g++ -o TestGetAzValue  TestGetAzValue.cpp  libroc.a 
 
 
Using the matlab “wrapper” functions: 
 
As in R, a dynamically loaded library must first be loaded; the relevant matlab 
function is “loadlibrary” (equivalent to R's dyn.load above).  However, matlab 
also places the burden on the user of converting their (matlab) data structures 
into pointers, which are then sent to the library function being called.  The 
entities returned by the library function are again pointers which must be 
converted back into matlab data structures. 
 
This administrative bookkeeping may be needed by matlab, but it is distracting to 
the user and diverts time and energy that could be directed to the actual ROC 
problem at hand.  The wrapper functions we have written for the matlab environment 
accept and return ordinary matlab data structures; the loading of the ROC library, 
and conversion of the data structures to and from library pointers, is then done 
internally within the wrapper functions. 
 
The price of this convenience is that we currently have no means of generating 
these wrapper functions automatically from the library source code.  (In principle 
adding a wrapper function for another library function entails adding the 
function's “signature” to the libroc.h file required by matlab to load the 
library, and then writing the wrapper function itself to accommodate this 
signature.  Users who need a library function added to our list of functions 
supported in matlab are urged to contact us so that we may do so.)  Furthermore, 
the locations of the libroc.h and libroc.so files, as well as the library version 
number (checked for compatibility of the wrapper functions with the library 
interface version), are all currently hard-coded and need to be modified to suit 
the user's environment.  We hope to address these issues in the future with the 
assistance of user feedback. 
 
 
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 
     DESCRIPTION OF THE FUNCTIONS 
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 
 



##################################################################################
####################################################### 
##################################################################################
####################################################### 
VERIFICATION IMPLEMENTATION 
##################################################################################
####################################################### 
##################################################################################
####################################################### 
 
 
#####################Check the library version in R 
##################################################################################
### 
This command allows the users to determine which version number the are using, as 
defined by major changes (used when some big implementation 
change has been included in this version, in our case we reserve it for new 
approaches e.g., when going from single modality to multi  
modality), minor changes (when adding some new functionalities or modifying a a 
function such that it won't be back-compatible anymore), and 
version (bug removal not expected to have any other effect apart from removing the 
unwanted behavior). 
It is important to check this all the time because version change and bugs are 
removed regularly. 
 
First one needs to initialize the values (in R) 
 
maj <- 0 
min <- 0 
vers <- 0 
 
.C("__libroc_version_MOD_get_version_number", as.integer(maj), as.integer(min), 
as.integer(vers)) 
 
In matlab: 
[major, minor, version] = libroc_version; 
 
##################################################################################
####################################################### 
##################################################################################
####################################################### 
 INDICES CALCULATION ROUTINES 

 
#Do you not want descriptions of the cvbmroc and pbmroc routines?  I don't have 
#a lot of the other component routines implemented yet. 
 
In matlab: 
 
[Az, a, b, Az_Variance] = cvbmroc(neg, pos); 
[AUC, da, c, AUC_Variance] = pbmroc(neg, pos); 
 
 
############### AUC ################################################# 
Computes the area under the curve for the proper/conventional binormal model.Here 
we describe only functions that are called based upon parameter estimation as 
opposed to directly from the data, as it is done 



by U-statistic, the Wilcoxon and other non-parametric methods, which are also 
available, but shoud be under fitting. 
 
TESTING: Both tested for various input values on May 18th 2009, the testing is not 
particularly problematic because the functions that 
define it are reasonably stable and not too complex. -- LP, U of C. 
 
function_name with expected mangling (check using nm on the library name) 
-------------- 
LINUX/WINDOWS: __proproc_functions__auc_pbm  
OSX:           __proproc_functions_MOD_auc_pbm 
LINUX/WINDOWS: __labroc_functions__auc_cvbm  
OSX:           __labroc_functions_MOD_auc_cvbm 
 
 
 R syntax call 
Define the following variables -- PROPER BINORMAL MODEL variables, users should 
refer to the sections from the proper binormal model is described 
 
da <- real value between 0 and infinity, depending upon the curve, the values is 
usually obtained by fitting the routine, as described below 
c <- real value between -1 and 1,  depending upon the curve, the values is usually 
obtained by fitting the routine, as described below 
auc <- real 0.0  -- R requires an initialization value 
error <- integer 0 -- default 0, if it failed could have different values, but it 
never happens 
 
Define the following variables -- Conventional BINORMAL MODEL 
a <- real value  between 0 and infinity, depending what the fit is 
b <- real value  between 0 and infinity, depending upon what the fit is 
auc <- real 0.0  R requires an initialization value 
error <- integer 0  default 0 if it failed -- never happens 
 
E.g., of calling the function, R syntax 
 
.C("__proproc_functions_MOD_auc_pbm", as.double(da), as.double(c) , 
as.double(AUC), as.integer(error) ) 
.C("__labroc_functions_MOD_auc_cvbm", as.double(a), as.double(b) , as.double(AUC), 
as.integer(error) ) 
 
 
Pseudocode call from other languages/environments 
 
 function_name(par1, par2, auc, ierror)  
 
double, intent(in):: par1 ! da or a 
double, intent(in):: par2 ! c or b 
double, intent(out):: auc  
integer, intent(out):: ierror ! ierror:: 0 -> OK, 1 == failed, 2 == c too small, 
used only phi part, used only for proproc   
 
 
############# variance of AUC ################################## 
Compute the variance of the area under the curve for the proper/conventional 
binormal model 
 
TESTING: Both tested for various input values on May 18th 2009 -- LP 
         var AUC for proproc was extensively tested in Pesce LL, Metz CE. Reliable 



and computationally efficient maximum-likelihood estimation of "proper" binormal 
ROC curves. Acad Radiol. 2007;14(7):814-29. 
 
function_name with expected mangling 
-------------- 
LINUX/WINDOWS: __proproc_functions__var_auc_pbm  
OSX:           __proproc_functions_MOD_var_auc_pbm 
LINUX/WINDOWS: __labroc_functions__var_auc_cvbm  
OSX:           __labroc_functions_MOD_var_auc_cvbm 
 
 
R syntax  
 
Define the following variables PROPER BINORMAL MODEL 
 
da <- real value  between 0 and infinity, depending what the fit is 
c <- real value  between -1 a,d 1, depending upon what the fit is 
varda <-  real value  from MLE or other estimation procedure 
varc <- real value from MLE or other estimation procedure 
covdac <- real value from MLE or other estimation procedure 
varauc <- real 0.0 R needs initialization 
error <- integer 0 default to successful estimation 
 
Define the following variables CONVENTIONAL BINORMAL MODEL 
 
a <- real value between 0 and infinity, depending what the fit is 
b <- real value between 0 and infinity, depending upon what the fit is 
vara   <-  real value from MLE or other estimation procedure 
varb   <-  real value from MLE or other estimation procedure 
covab  <-  real value from MLE or other estimation procedure 
varauc <- real, R initialization, e.g. 0.0 
error  <- integer 0 for successful estimation 
 
 
Call the functions from R  
 .C("__proproc_functions_MOD_var_auc_pbm", as.double(da), as.double(c) , 
as.double(varda), as.double(varc), as.double(covdac), as.double(varauc), 
as.integer(error)) 
 
 .C("__labroc_functions_MOD_var_auc_cvbm", as.double(a), as.double(b) , 
as.double(vara), as.double(varb), as.double(covab), as.double(varauc), 
as.integer(error)) 
 
Pseudocode call from other languages/environments 
 
 function_name(par1,par2,var_par1,var_par2,cov_par1_par2, var_auc, ierror) 
 double, intent(IN):: par1, par2  ! parameters d_a or a; and b or c 
 double, intent(IN):: var_par1, var_par2, cov_par1_par2  ! variance par1, variance 
par2, covariance ... 
 double, intent(OUT):: varauc ! output, the variance  
 integer, intent(OUT):: ierror ! error flag, ierror (-1 August 2009) if wrong 
input,  0 if right, 2 if c is very small and approximations are used  
                                 (that to the best of our knowledge are OK -- only 
for proproc labroc doesn't return a 2). 
 
 
########### Partial_auc ######################################## 
Computes the partial area under the curve for the proper and conventional binormal 



models 
for testing see file ROC/FORTRAN_LIBS/Verification of functional values.nb 
(mathematica file) 
We tested for values of c = -1, -.5, -.25, 0, +.25, +.5, +1, for values of da = 
10000, 100, 12, 5, 3,1,0 
We tested for values of b = 0, .5, 1, 2, +5,  for values of a = 10000, 100, 
12,5,3,1,0 
And they correspond both to numerical and analytical values within 6 decimal 
places. Both vertical and horizontal partial AUCs 
 
function_name with expected mangling 
--------------- 
LINUX/WINDOWS: __proproc_functions__partialauc_pbm  
OSX:           __proproc_functions_MOD_partialauc_pbm 
LINUX/WINDOWS: __labroc_functions__partialauc_cvbm  
OSX:           __labroc_functions_MOD_partialauc_cvbm 
 
 
Call from R 
Define the following variables PROPER BINORMAL MODEL 
da <- real value between 0 and infinity, depending what the fit is 
c <- real value between -1 a,d 1, depending upon what the fit is 
frac1 <- real  lower bound for the partial AUC, between 0 and 1 
frac2 <- real  upper bound for the partial AUC, between frac1 and 1] 
FPF_flag <- integer, 1 means a vertical partial AUC, 0 means an horizontal 
partial_auc <- real 0.0 R requires initialization initialization, value of partial 
AUC on exit] 
error <- integer 0, see below for details 
 
OR Define the following variables CONVENTIONAL BINORMAL MODEL 
a <- real value between 0 and infinity, depending what the fit is 
b <- real value between 0 and infinity, depending upon what the fit is 
frac1 <- real lower bound for the partial AUC, between 0 and 1 
frac2 <- real upper bound for the partial AUC, between frac1 and 1 
FPF_flag <- integer, 1 means a vertical partial AUC, 0 means an horizontal 
partial_auc <- real 0, R requires initialization, value of partial AUC on exit 
error <- integer 0, see below for details 
 
Actual call to procedures from R: 
.C("__proproc_functions_MOD_partialauc_pbm", as.double(da), as.double(c) , 
as.double(frac1),as.double(frac2), as.integer(FPF_flag), as.double(partial_auc), 
as.integer(error) ) 
 
.C("__labroc_functions_MOD_partialauc_cvbm", as.double(a), as.double(b) , 
as.double(frac1),as.double(frac2), as.integer(FPF_flag), as.double(partial_auc), 
as.integer(error) ) 
 
 
Pseudocode call from other languages/environments 
 
function_name(par1, par2, fraction_1, fraction_2, FPF_flag, partial_auc, ierror) 
 
 double, intent(in):: par1 ! First Curve parameters 
 double, intent(in):: par2 ! Second Curve parameters 
 double, intent(in):: fraction_1, fraction_2 ! These are called fractions because 
the can be FPF or TPF depending upon which area are we computing 
 integer, intent(in):: FPF_flag ! If it is true, it means that the area computed 
will 



       ! be between FPF_1 and FPF_2, otherwise it means that it will be between 
TPF_1 and 
       ! TPF_2 
  double, intent(out):: partial_auc  
  integer,           intent(out):: ierror  ! = 0, computatio is OK 
                                           ! = bad_input (-1 as of August 2009) 
the values in input are wrong (see source code for details) 
                                           ! = 1 computation failed (e.g., normal 
deviates could not be computed -- it never happened of late) 
                                           ! = 2 currently not used (had a 
different purpose before) 
                                           ! = 3 , fractions are almost identical 
or identical 
 
In matlab: 
[partial_AUC, error_flag] = partial_auc_pbm(da, c, frac1, frac2, ... 
    fpf_flag); 
[partial_AUC, error_flag] = partial_auc_cvbm(a, b, frac1, frac2, ... 
    fpf_flag); 
 
########## variance of partial auc ####################################### 
Computes the value of the variance of the partial AUC both for the conventional 
and the proper binormal model 
as described in Pan, X., Metz, C.E., 1997. The proper binormal model: parametric 
receiver operating characteristic curve estimation with 
degenerate data. Acad. Radiol. 4, 380â�“389. (note that while the equations are 
described in that paper, they are also for the most part 
full of typos, the only reliable source of those equations we know our program 
itself) 
 
For testing see file ROC/FORTRAN_LIBS/Verification of functional values.nb 
(mathematica file) 
We tested for values of c = -1, -.5, 0, +.5, +1, for values of da = 5, 3,1,0 
We tested for values of b = 0, .5, 1, 2, +5,  for values of a = 10000, 100, 
12,5,3,1,0 
and they correspond both to numerical and analytical values within 6 decimal 
places. Both vertical and horizontal partial AUCs 
for values at  the boundaries (i.e., da = 0 c = +-1, a = 0 and b = 0) the variance 
may not be returned because the  
conditions implicit in the series expansion and normality of estimates are clearly 
violated. When it is returned 
care must be paid to whether the assumptions behind the delta method here applied 
are appropriate (the delta 
assume normal distributions for both variables -- which means we are assuming the 
relationship is linear for the  
range of values spanned by the variances, the assumption is violated if the 
variances are large or if the estimates 
are too close to the boundaries. We decided not to force a control for the 
assumptions, which means that it is up to the 
user to make sure it is likely to work. 
 
 
function_name with expected mangling 
 
function_name 
------------- 
LINUX/WINDOWS: __proproc_functions__var_partialauc_pbm  
OSX:           __proproc_functions_MOD_var_partialauc_pbm 



LINUX/WINDOWS: __labroc_functions__var_partialauc_cvbm  
OSX:           __labroc_functions_MOD_var_partialauc_cvbm 
 
 
Call from R 
 
First define the following variables 
da <- real value between 0 and infinity, depending what the fit is 
c <- real value  between -1 a,d 1, depending upon what the fit is 
frac1 <- real lower bound for the partial AUC, between 0 and 1 
frac2 <- real upper bound for the partial AUC, between frac1 and 1 
flag <- integer, 1 means a vertical partial AUC, 0 means an horizontal 
varda <-  real value, usually computed by MLE or other estimation procedure 
varc = real value, also from MLE or other estimation procedure 
covdac = real value also from MLE or other estimation procedure 
varPartialAUC <- real 0.0, requires initialization, value of partial AUC on exit 
error <- integer 0 [see below for details] 
 
 
OR Define the following variables CONVENTIONAL BINORMAL MODEL 
a <- real value between 0 and infinity, depending what the fit is 
b <- real value between 0 and infinity, depending upon what the fit is 
frac1 <- real lower bound for the partial AUC, between 0 and 1 
frac2 <- real upper bound for the partial AUC, between frac1 and 1 
flag <- integer, 1 means a vertical partial AUC, 0 means an horizontal 
vara <-  real value, from MLE or other estimation procedure 
varb = real value, from MLE or other estimation procedure 
covab = real value, from MLE or other estimation procedure 
varauc <- real 0.0, R requires initialization 
varPartialAUC <- real 0.0, start with some initialization, value of partial AUC on 
exit 
error <- integer 0 [see below for details] 
 
 
Call to the functions from R 
.C("__proproc_functions_MOD_var_partialauc_pbm", as.double(da), as.double(c) 
,as.double(frac1),as.double(frac2), as.integer(flag), as.double(varda), 
as.double(varc), as.double(covdac), as.double(varPartialAUC), as.integer(error) ) 
 
.C("__labroc_functions_MOD_var_partialauc_cvbm", as.double(a), as.double(b) 
,as.double(frac1),as.double(frac2), as.integer(flag), as.double(vara), 
as.double(varb), as.double(covab), as.double(varPartialAUC), as.integer(error) ) 
 
 
 
Pseudocode call 
 
  function_name(par1, par2, fraction_1, fraction_2, FPF_flag, & 
                                          var_par1,var_par2,cov_par1_par2, 
var_p_auc, ierror) 
 
 double, intent(in):: par1 ! First Curve parameters 
 double, intent(in):: par2 ! Second Curve parameters 
 double, intent(in):: fraction_1, fraction_2 ! These are called fractions because 
the can be FPF or TPF depending upon which area are we computing 
 integer, intent(in):: FPF_flag ! If it is true, it means that the area computed 
will 
       ! be between FPF_1 and FPF_2, otherwise it means that it will be between 



TPF_1 and 
       ! TPF_2 
 double, intent(IN):: var_par1, var_par2, cov_par1_par2  ! variance par1, variance 
par2, covariance ... 
 double, intent(OUT):: var_p_auc ! output, the variance  
  integer,           intent(OUT):: ierror  ! = 0, computatio is OK 
                                           ! = bad_input (-1 as of August 2009) 
the values in input are wrong (see source code for details) 
                                           ! = 1 computation failed (e.g., normal 
deviates could not be computed -- it never happened of late) 
                                           ! = 2 currently not used (had a 
different purpose before) 
                                           ! = 3 , fractions are almost identical 
or identical 
 
 
 
############# TPF (FPF) and FPF (TPF) ########################################### 
These are two functions the compute the value of the TPF when the FPF is known or 
the value 
of the FPF when the FPF is known. Of course the parameters are assumed to be 
known. The  
The known value is considered to be fixed as opposed to have to be estimated and 
therefore 
contain a measurement error. 
 
function_name with expected mangling 
------------- 
LINUX/WINDOWS: __[proproc/labroc]_functions__fpf_find_tpf_[pbm/cvbm]  
LINUX/WINDOWS: __[proproc/labroc]_functions__tpf_find_fpf_[pbm/cvbm]  
OSX      : __[[proproc/labroc]_functions_MOD_fpf_find_tpf_[pbm/cvbm]  
OSX      : __[proproc/labroc]_functions_MOD_tpf_find_fpf_[pbm/cvbm]  
 
Call from R 
 
First define the following variables 
da <- real value between 0 and infinity, depending what the fit is 
c <- real value  between -1 a,d 1, depending upon what the fit is 
PF <- real, input value, FPF for the first function, TPF for the second, between 0 
and 1 
OPF <- real, output value, TPF for the first function, FPF for the second, between 
0 and 1, further restrictions might apply to specific models 
error <- integer 0 [default 0 if it failed -- never happens] 
 
Call to the function from R 
.C("__[proproc/labroc]_functions_MOD_fpf_find_tpf_[pbm/cvbm]", as.double(da), 
as.double(c) , as.double(FPF), as.double(TPF), as.integer(error) ) 
 
Pseudocode example of call to the functions 
 
 function_name(d_a_par, c_par, fpf , tpf, ierror) 
double, intent(in):: d_a_par, c_par ! parameters of the current fit, used as input 
double, intent(in):: fpf ! value of the fpf for the single point available for the 
fit 
double, intent(OUT):: tpf ! value of TPF for that fpf 
double, intent(OUT)::  ierror ! error flag. If ierror = -1, the value of FPF is 
out of bounds 
 



In matlab: 
 
[tpf, error_flag] = fpf_find_tpf_pbm(da, c, fpf); 
[tpf, error_flag] = fpf_find_tpf_cvbm(a, b, fpf); 
 
############# variance of TPF (FPF) and FPF (TPF) 
########################################### 
These are two functions the compute the value of variance of the TPF when the FPF 
is known or the value 
of the FPF when the FPF is known. Of course the parameters are assumed to be 
known. The  
The known value is considered to be fixed as opposed to be estimated therefore it 
does not affect the 
variance. 
  
function_name with expected mangling 
------------- 
LINUX/WINDOWS: __[proproc/labroc]_functions__var_fpf_find_tpf_[pbm/cvbm]  
LINUX/WINDOWS: __[proproc/labroc]_functions__var_tpf_find_fpf_[pbm/cvbm]  
OSX      : __[proproc/labroc]_functions_MOD_var_fpf_find_tpf_[pbm/cvbm]  
OSX      : __[proproc/labroc]_functions_MOD_var_tpf_find_fpf_[pbm/cvbm]  
 
Call from R 
First define the following variables 
da <- real value between 0 and infinity, depending what the fit is 
c  <- real value between -1 a,d 1, depending upon what the fit is 
varda <-  real value from MLE or other estimation procedure 
varc = real value from MLE or other estimation procedure 
covdac = real value from MLE or other estimation procedure 
PF <- real input value, FPF for the first function, TPF for the second, between 0 
and 1 
varopf <- real 0.0, R requires initialization, return the value of the variance of 
the estimated fraction 
error <- integer 0, default 0, wrong input -1, if it failed 1 -- never happens 
 
Call the function from R 
.C("__[proproc/labroc]_functions_MOD_var_fpf_find_tpf_[pbm/cvbm]", as.double(da), 
as.double(c) , as.double(varda), as.double(varc), as.double(covdac), 
 as.double(PF), as.double(varopf), as.integer(error) ) 
 
 
Pseudocode call for one of the two 
 
function_name(d_a_par, c_par, var_d_a, var_c, cov_d_a_c, fpf , var_tpf, ierror) 
double, intent(in):: d_a_par, c_par ! parameters of the current fit, used as input 
double, intent(IN):: var_d_a, var_c, cov_d_a_c ! parameters of the current fit, 
used as input 
double, intent(in):: fpf ! value of the fpf for the single point available for the 
fit 
double, intent(OUT):: var_tpf ! value of TPF for that fpf 
double, intent(OUT)::  ierror ! error flag. If ierror = -1, the value of FPF is 
out of bounds 
 
############# TPF (FPF) at cutoff value 
########################################### 
these are functions that compute the value of the TPF or FPF when the cutoff value 
is known (either in the  
actual or in the latent space. Of course the parameters are assumed to be known -- 



if the functions are parametric. 
There is no return error because we decided that the possible errors are just too 
stupid to bother and 
checking of their consistency was going to be expensive for simulations and 
resampling procedures. 
 
 
function_name with expected mangling, for the semi-parametric models 
------------- 
LINUX/WINDOWS: __[proproc/labroc]_functions__fpf_[pbm/cvbm]  
LINUX/WINDOWS: __[proproc/labroc]_functions__tpf_[pbm/cvbm]  
OSX      : __[proproc/labroc]_functions_MOD_fpf_[pbm/cvbm]  
OSX      : __[proproc/labroc]_functions_MOD_tpf_[pbm/cvbm]  
 
 
Call from R 
First define the following variables 
da <- real value between 0 and infinity, depending what the fit is 
c  <- real value between -1 a,d 1, depending upon what the fit is 
PF <- real input value, FPF for the first function, TPF for the second, between 0 
and 1 
OPF <- real input value, 1-FPF for the first function, 1-TPF for the second, 
between 0 and 1 
 
 
Call the function from R 
.C("__[proproc/labroc]_functions_MOD_fpf_[pbm/cvbm]", as.double(da), as.double(c) 
, as.double(PF), as.double(OPF)) 
  
 
function_name with expected mangling -- non parametric 
The non-parametric functions associate a value of 1/2 for values equal to the 
threshold.  
------------- 
LINUX/WINDOWS: __roc_nonparametric__empirical_fpf  
LINUX/WINDOWS: __roc_nonparametric__empirical_tpf  
OSX      : __roc_nonparametric_MOD_empirical_fpf 
OSX      : __roc_nonparametric_MOD_empirical_tpf 
 
 
Call from R 
First define the following variables 
N <- integer value,  between 1 and infinity, it is either the number of actually-
positive or the number of actually-negative cases] 
AP/AN  <- array(0, c(1, N)),  real array of size N [with the values associated 
with each of the actually-positive or actually-negative cases] 
fpf/tpf <- real value, the estimated sensitivity of 1 - specificity 
ierror <- integer value # checks at least whether the value of N makes sense, 
returns -1 if it does not 
 
 
Call the function from R 
.C("__roc_nonparametric_MOD_empirical_tpf", as.integer(N), as.double(AP) , 
as.double(threshold), as.double(tpf), as.integer(ierror)) 
 
 
Pseudocode example for one of the two with details about calling scheme 
 



function_name(N, AP, threshold, tpf, ierror) 
integer, intent(in):: N ! number of actually-positive cases 
double, dimension(N), intent(IN):: AP ! value associated with each of the 
actually-positive cases 
double, intent(in):: threshold ! value above which a case has to be considered 
positive 
double, intent(OUT):: TPF ! estimated value for the sensitivity 
integer, intent(OUT):: ierror ! whether the input was acceptable, there are no 
known computation errors at this point 
 
 
############# Exact CIs for TPF (FPF) at cutoff value 
########################################### 
We are not reporting functions for the semi-parametric estimates at this point 
because their use is complex as it requires an estimation of 
the relationship between the value of the variables used in the experiment and the 
latent variables for which the estimation is computed. 
The non-parametric functions associate a value of 1/2 for values equal to the 
threshold.  
Computes the confidence intervals for a proportion using exact confidence 
intervals 
starting from the number of positives calls observed (k).  
From Fleiss "statistical methods for rates and proportions", third edition, Wiley, 
page 22.  
the search of largest (smallest) value of p (the probability of observing a 
success) that  
has at at least a 5% chance of generating at least as few (at most as many) 
successes as k 
is done by first simply bounding the value and applying bisection. More refined 
approaches can 
be used, but it did not seem necessary at this point.We use the log of the 
probability of each 
observation as basis of the calculations to avoid near constant over- ad under-
flows. 
 
Expected function_name with mangling  
------------- 
LINUX/WINDOWS: __roc_nonparametric__exact_CI_empirical_fpf  
LINUX/WINDOWS: __roc_nonparametric__exact_CI_empirical_tpf  
OSX      : __roc_nonparametric_MOD_exact_CI_empirical_fpf 
OSX      : __roc_nonparametric_MOD_exact_CI_empirical_tpf 
 
 
Call from R 
First define the following variables 
N <- integer value, between 1 and infinity, it is either the number of actually-
positive (or the number of actually-negative cases) 
k <- integer value, the number of cases called positive 
Cl <- real value between 0 and 1, confidence level, e.g., .95 for 95% 
TCI <- integer value, -1 between 0 and UB, 0 between LB and UB, +1 between LB and 
1 
lb <- real value, lower bound of the CI 
ub <- real value, upper bound of the CI 
ierror <- integer value, checks at least whether the value of N makes sense, 
returns -1 if it does not 
 
Call the function from R 
.C("__roc_nonparametric_MOD_exact_CI_empirical_fpf", as.integer(N), as.integer(k), 



as.double(CL), as.integer(TCI), as.double(lb),as.double(ub),as.integer(ierror)) 
 
 
Pseudocode for one of the two with details about calling scheme 
 function_name(mn, k , confidence_level, type_of_CI,  lb, ub, ierror) 
 integer, intent(IN):: mn ! number of actually-negative cases 
 integer, intent(IN):: k  ! number of actually-negative cases cases that were 
called positive at a specific 
                          ! threshold or decision scheme (e.g., a combination of 
one or more thresholds and a random 
                          ! number). We use the integer to avoid issues that could 
be created by rounding errors 
                          ! by forcing the calling program to take care of it. 
 real(kind=double), intent(IN):: confidence_level ! e.g., 95% confidence interval 
a number from 0 to 1. 
 integer, intent(IN):: type_of_CI ! -1 -> lower bound is 0 find upper (find the 
"inferiory" CI) , 
                                  !  0 -> find upper and lower (find the "non-
equality" CI), and 
                                  ! +1 -> upper bound is 1, find lower (find the 
superiority CI) 
 
 real(kind=double), intent(OUT)::lb, ub ! estimated lower and upper bound of the 
CI. 
 integer, intent(OUT) :: ierror ! error value for the CI calculation : 
                                ! 0 -> Procedure did not detect any computation 
issues 
                                ! -1 -> input values are not acceptable 
 
 
 
##################################################################################
####################################################### 
##################################################################################
####################################################### 
 PLOTTING ROUTINES 
##################################################################################
####################################################### 
##################################################################################
####################################################### 
 
 
#############  Plotting points for a [proproc/labroc] curve 
############################################################## 
Returns a set of points on an ROC curve specified by the [proproc/labroc] model 
for parameters da and c (also to be part of the input) 
The plot of empirical operating points (trapezoidal non-parametric ROC  curve 
corresponding to the Mann-Whitney form of the Wilcoxon 
 statistics)  is described later. 
 
 function_name with mangling 
------------- 
LINUX/WINDOWS: __[proproc/labroc]_out_MOD_points_on_curve_[pbm/cvbm] 
OSX      : __[proproc/labroc]_out__points_on_curve_[pbm/cvbm] 
 
Call from R 
First define the following variables 
da <- real value between 0 and infinity, depending what the fit is 



c <- real value  between -1 a,d 1, depending upon what the fit is 
NumPts <-  integer, the number of points desired on the curve 
CurvePoints <- matrix(0, 2, NumPts) real array with FPF,TPF pairs 
error <- integer 0 default 0 , se below for other error messages 
 
 
Call of the function from R 
.C("__[proproc/labroc]_out_MOD_points_on_curve_[pbm/cvbm]", 
as.double(da), 
as.double(c), 
as.integer(NumPts), 
as.double(CurvePoints), 
as.integer(error)) 
 
 
Pseudocode call example 
 
 call function_name(d_a_par_in, c_par_in, num_pts, CurvePoints,ierror) 
 double, intent(IN):: d_a_par_in, c_par_in ! curve parameters 
 integer, intent(IN) :: num_pts ! number of curve points whose value is desired 
 real(kind=double), dimension(2, num_pts), intent(OUT) :: CurvePoints ! the actual 
                  !  array with the fpf, tpf values on exit 
 integer, intent(OUT):: ierror  ! 0 -> OK; 1 -> Failed; -1 -> wrong input 
 
 
#############  Plotting empirical operating points  
###############################################################  
Extracts the set of the empirical operating points (corners of the ROC plot or 
truth state runs  
See C. E. Metz, B. A. Herman, and J-H. Shen, â�˜â�˜Maximum likelihood estimation 
of receiver operating characteristic ~ROC! curves from 
continuously-distributed data,â�™â�™ Stat. Med. 17, 1033â�“1053 ~1998 for a 
description of them 
 
function_name with expected mangling 
------------- 
LINUX/WINDOWS: __roc_nonparametric_MOD_empirical_operating_points_list 
OSX      : __roc_nonparametric_MOD_empirical_operating_points_list 
 
Call from R 
First define the following variables 
mn <- integer, number of actually-negs 
ms <- integer, number of actually-pos 
AN <- double array value of actually negative cases 
AP <- double array value of actually positive cases 
PL <- 0 or 1 whether positivity is for large values 
numpts <- integer, output, the number of empirical  points found 
optpts <- matrix(0, 2, Mn+Ms), output, list of opeating points notice that only 
the the first numpts will contain data.  
error <- integer, default 0 , se below for other error messages 
 
Call of the function from R: 
.C("__roc_nonparametric_MOD_empirical_operating_points_list", 
as.integer(mn), 
as.integer(ms), 
as.double(AN), 
as.double(AP), 
as.integer (PL), 



as.integer(numpts), 
as.double(optpts), 
as.integer(error)) 
 
 
Pseudocode example 
 function_name( mn, ms, neg_cases, pos_cases, positiveislarge, num_pts, 
operatingpts,ierror) 
 integer, intent(IN):: mn      !number of actually negative cases 
 integer, intent(IN):: ms      !number of actually positive cases 
 double,dimension(mn), intent(IN) :: neg_cases 
 double,dimension(ms), intent(IN) :: pos_cases 
 integer, intent(IN):: positiveislarge ! whether positivity is for more positive 
or more negative values 
                                       ! 1 if it is for larger values, 0 if it is 
for smaller values 
 integer, intent(out) :: num_pts ! number of empirical operating points found 
 double, dimension(2, mn+ms), intent(OUT) :: operatingpts ! the actual 
                  !  array with the fpf, tpf values of the empirical operating 
points 
 integer, intent(OUT):: ierror  ! 0 -> OK; 1 -> Failed; -1 -> wrong input 
 
##################################################################################
####################################################### 
##################################################################################
####################################################### 
 ESTIMATION ROUTINES 
##################################################################################
####################################################### 
##################################################################################
####################################################### 
NOTE: The categorizer has to be called before any multinomial sampling MLE (or 
else) based is called. Other types of arrangements and wrappers 
are available, but they will not be described here as they are largely redundant. 
 
#############  categorizer   
############################################################## 
Transforms two senquences of values (one sequence for the actually negative and 
one sequence for the actually positive cases) into their truth runs, which 
can then be used as categorical data into a MLE roc fitting model. 
See C. E. Metz, B. A. Herman, and J-H. Shen, â�˜â�˜Maximum likelihood estimation 
of receiver operating characteristic ~ROC! curves from 
continuously-distributed data,â�™â�™ Stat. Med. 17, 1033â�“1053 ~1998 for a 
description of them 
 
 function_name with expected mangling 
------------- 
LINUX/WINDOWS: __categorization_MOD_catgrz 
OSX      : __categorization__catgrz 
 
Call from R 
First define the following variables 
 
PositiveLarge  integer,  1 if positivity is for larger values, 0 otherwise 
mn   integer, number of actually-negative cases 
ms  integer, number of actually-positive cases 
DebugLogFile,  integer  0 if no  debugfile should be written 
cat0 <- matrix(0, 2, MaxNumCategories), output,  integer array with categorical 



data 
AP <- rnorm (ms, 1, 1),  actually-positive cases, generated from a normal 
distribution 
AN <- rnorm (mn), actually-negative cases, generated from a standard normal 
distribution 
NumCategoriesFound integer, number of categories/truth runs found in the data 
MaxNumCategories <- e.g., 20 # integer max number of categories to be 
                 considered. PBM/CvBM have been extensively at most 400, usually 
more than 50 is not necessary 
CaseCat <- matrix(0, 1, mn+ms), integer  on output, for each case, it containts 
the category where it was placed 
 
Call of the function from R 
 
.C("__categorization_MOD_catgrz", 
as.integer(PositiveLarge), 
as.integer(mn), 
as.integer(ms), 
as.integer(DebugLogFile), 
as.integer(cat0), 
as.double(AN), 
as.double(AP), 
as.integer(NumCategoriesFound), 
as.integer(MaxNumCategories), 
as.integer(CaseCat) ) 
 
Pseudocode call 
 function_name(POSITIVEISLARGE, NUM_NORMAL_CASES,NUM_ABNORMAL_CASES,idebug, CAT0, 
& 
                   NEG_INPUT, 
POS_INPUT,NUM_CATEGORIES,MAX_NUM_CATEGORIES,CASE_CAT) 
 
 INTEGER, INTENT(IN):: POSITIVEISLARGE ! Likelihood of abnormal TEST RESULT VALUE 
associated with larger values 
 INTEGER, INTENT(IN):: NUM_NORMAL_CASES 
 INTEGER, INTENT(IN):: NUM_ABNORMAL_CASES 
 INTEGER, INTENT(IN):: idebug ! whether to write a log file or not 
 double,INTENT(IN),DIMENSION(NUM_NORMAL_CASES)::NEG_INPUT ! negative TEST RESULT 
VALUEs are stored 
 double,INTENT(IN),DIMENSION(NUM_ABNORMAL_CASES)::POS_INPUT ! negative TEST RESULT 
VALUEs are stored 
 
 INTEGER, INTENT(IN) :: MAX_NUM_CATEGORIES ! MAXIMUM NUMBER OF CATEGORIES ALLOWED 
BY THE DIMENSIONING IN THE 
                                           ! MAIN PROGRAM, THE MODULE WILL SEEK TO 
PRODUCE MAX_NUM_CATEGORIES.  
                                           ! IF LESS THAT THAT ARE AVAILABLE (SAY 
N_CAT) IT WILL RETURN N_CAT 
                                           ! IF MORE ARE AVAILABLE, IT WILL RETURN 
MAX_NUM_CATEGORIES 
 
 INTEGER, INTENT(out), DIMENSION(2, MAX_NUM_CATEGORIES) :: CAT0 ! CONTAINS THE 
CATEGORIES  
                    ! CREATED BY THIS CATEGORIZATION ALGORITHM ON EXIT 
 INTEGER, INTENT(out):: NUM_CATEGORIES ! THE NUMBER OF CATEGORIES FOUND 
 INTEGER, 
INTENT(out),DIMENSION(2,max(NUM_NORMAL_CASES,NUM_ABNORMAL_CASES))::CASE_CAT  
                   ! This array stores for each case the category where it is 



allocated. Mostly to be 
                   ! used by MRMC schemes, and this is why it is optional  
 
 
##################################################################################
####################################################### 
MAXIMUM-LIKELIHOOD ESTIMATION SEMI-PARAMETRIC MODEL ROUTINES, BASED ON MULTINOMIAL 
SAMPLING 
##################################################################################
####################################################### 
NOTE 1: the return error flag from the routines follow nearly identical coding. 
Where there is a difference between algorithms, it will be indicated. 
NOTE 2:  The flags are integers.  
NOTE 3: Newer versions of the library might contain additional flags that are not 
included here yet. Feel free to make us notice any inconsistencies.  
NOTE 4: Not all possible errors are considered here and sometimes a flag might be 
misleading, be careful how you use them. 
NOTE 5: Usually it will be possible to rerun the same fit forcing the routine to 
write a much more extensive error logging file. 
 RETURN FLAGS 
 -1 => the categorical data send to the subroutinea is bad ROC data (negative 
number of cases, numbers don't add up and so on) 
  0 => fit was successful 
  1 => The routines could not converge. This *NEVER* happened to date (11/15/2010) 
that I know of, so please contact us if you have this problem 
  2 => Note enough data to produce a unique ROC fit, e.g., there is only one 
point. The condition of degeneracy might be reached for  
        different models in different situations 
  3 => positives and negatives are perfectly separated, it is more of a warning 
  4 => initial estimates did not converge; it is similar to 1, but more specific 
  5 => estimates of variances did not converge or should not be trusted (variances 
cannot be trusted also in other situations, this is not 
       exhaustive and sometimes the variances cannot be trusted, but the routine 
might not report it... 
 6 => fit was successful, variances are pseudovariances, see Pesce LL, Metz CE. 
Reliable and computationally efficient maximum-likelihood estimation 
        of proper binormal ROC curves. Acad Radiol 2007;14:814â�“829 
  7 => estimates of var are bad because the fit is too close to the boundary of 
the parameter space. Usually these maxima are either cusps or 
       are simply created by the boundary conditions, as such the gradient is not 
zero and nearly every condition for the Kramer-Rao bound to 
       hold is false. See reference above. 
  8 => CvBM would produce an exact, but degenerate fit: the data is such that a 
snaky fit made of straight segments, as produced by 
       some asymptotic values of a and b for the conventional binormal model, is 
an 
       exact fit to the data, as such it is also the MLE fit as the perfect fit 
has the highest possible likelihood. 
  9 => Data is such that a fit made of two straight segments with AUC = 0 is 
possible, this is a perverse fit where *all* data points are  
       misclassified. Usually it implies an input error or something worse. 
 
 
########  Fitting CvBM (the same model upon which were based labroc/Rocfit/RSCORE 
(U of IOWA) ############################################################# 
Produces an MLE fit using the conventional binormal model. The input 
has to be categorical data (e.g., from catgrz). The model assume that data can be 
modeled using a two multinomial distributions. Data-points are assumed to be 



independent. 
WARNING: If the categorical data fed to the program is not reduced to its truth 
runs (for example if the data is 
          categorical with categories of identical truth following each other) aka 
fully-collapsed, the Hessian and 
          variance covariance matrices will refer to the collapsed data. In 
principle the non-collapsed matrices can 
          be derived from the collapsed matrices, but I could never imagine a 
reason for computing them. One can send 
          the data through the categorizer first, to remove redundant 
   categories. If you disagree with this decision let us know  (particulaly 
why) 
 
function_name with expected mangling 
------------- 
LINUX/WINDOWS: __labroc_functions__cvbmroc_mle 
OSX      : __labroc_functions_MOD_cvbmroc_mle 
 
Call from R 
First define the following variables 
 
mn  integer, number of actually-negative cases 
ms  integer, number of actually-positive cases 
NumCat  integer, number of categories/truth runs 
k <- matrix(x, NumCat),  integer array with categorical data for actually-negative 
l <- matrix(x, NumCat), integer array with categorical data for actually-positive 
DebugLogFile <- 0, integer  0 if no  debugfile should be written 
a, real value between -infinity  and +infinity, depending what the fit is -- 
negative values are associated with curves that have performance worse than 
random. 
b, real value between 0 and infinity, depending upon the fit. The more different 
from 0 is |log[b]| the less convex-looking will be the fit.  
auc, real value , AUC between 0 and 1, depending upon the fit is 
var_auc, real value, the variance of AUC 
vc_cutoffs <- array(0, c(1, NumCat - 1)), estimated cutoffs  
logl, value of the log likelihood function at the fit 
error, error message, about the fit, 0 is fine. for the other errors see above 
varcov <- matrix(0, NumCat+1, NumCat+1), variance covariance matrix 
 
 
 Call of the function from R 
 .C("__labroc_functions_MOD_cvbmroc_mle", 
as.integer(mn), 
as.integer(ms), 
as.integer(NumCat), 
as.integer(k), 
as.integer(l), 
as.integer(DebugLogFile), 
as.double(a), 
as.double(b), 
as.double(auc), 
as.double(var_auc), 
as.double(vc_cutoffs), 
as.double(logl), 
as.integer(error), 
as.double(varcov)) 
 
 



 
Pesudocode call 
 
function_name(mn, ms, num_categ, catn_in, cats_in, idebug,  
                       a_par, b_par, auc, variance_auc, vc_cutoffs_out, log_like, 
ierror,  
                       cov_out, hessian_out) 
 
integer, intent(in):: mn ! number of actually negative cases 
integer, intent(in):: ms ! number of actually positive cases 
integer, intent(in) :: num_categ ! Number of categories as created by catgrz 
integer, dimension(num_categ), intent(in):: catn_in, cats_in ! arrays containing 
categorical data 
integer, intent(in) :: idebug               ! 0 = no debug; 1  = debug 
double,intent(out)                        :: a_par, b_par ! MLE of the parameters 
double,intent(out)                        :: auc ! AUC, area under the curve 
double,intent(out)                        :: variance_auc ! estimated variance of 
AUC 
 
double, dimension(num_categ-1), intent(out) :: vc_cutoffs_out  ! cutoff parameter 
values at the maximum found 
double, intent(out)                       :: log_like ! value of the log 
likelihood function at the final point 
integer, intent(out)                                   :: ierror ! Error flag 
about the MLE fit 
! Note that the error values are set in this routine, or initialize_d_a_c so if 
their numbers have 
! to be changed, they have to be changed here, the rest of the subroutines use 
their own numbering 
! specific per routine. Look above for the different meaning. Not only 0 is 
successful fit 
double, dimension(num_categ+1,num_categ+1), intent(out)  :: cov_out ! these are 
used because the number 
double, dimension(num_categ+1,num_categ+1), intent(out), optional  :: hessian_out 
! of categories can be  
     ! different inside proproc because of collapsing. Note that only the reduced 
hessian will be returned, the 
     ! rest will be set to garbage, NOTE THAT THIS WAS NOT DESCRIBED 
     !IN THE EXAMPLE ABOVE 
 
 
########  Fitting PBM aka proproc   
############################################################################# 
produce a MLE fit using the proper binormal model. The input has to be categorical 
data (e.g., from catgrz) 
 WARNING: If the categorical data fed to the program is not reduced to its truth 
runs (for example if the data is 
          categorical with categories of identical truth following each other) aka 
fully-collapsed, the Hessian and 
          variance covariance matrices will refer to the collapsed data. In 
principle the non-collapsed matrices can 
          be derived from the collapsed matrices, but I could never imagine a 
reason for computing them. One can send 
          the data through the categorizer first, to remove redundant categories. 
 
function_name with expected mangling 
------------- 
LINUX/WINDOWS: __proproc_functions__pbmroc_mle 



OSX      : __proproc_functions_MOD_pbmroc_mle 
 
 
Call from R 
 First define the following variables 
 
mn  integer, number of actually-negative cases 
ms  integer, number of actually-positive cases 
NumCat  integer, number of categories/truth runs 
k <- matrix(x, NumCat) , integer array with categorical data for actually-negative 
l <- matrix(x, NumCat) , integer array with categorical data for actually-positive 
DebugLogFile <- 0, integer  0 if no  debugfile should be written 
da, real value  between 0 and infinity, depending what the fit is 
ce, real value,   between -1 a,d 1, depending upon what the fit is 
auc, real value  AUC between .5 and 1, depending upon what the fit is 
var_auc real value, the variance of AUC 
vc_cutoffs <- array(0, c(1, NumCat - 1))# estimated cutoffs  
logl,  value of the log likelihood function at the fit 
error,  error message, about the fit, 0 is fine. see above for more details. 
varcov <- matrix(0, NumCat+1, NumCat+1), variance covariance matrix. 
 
 
Call of the function from R 
 .C("__proproc_functions_MOD_pbmroc_mle", 
as.integer(mn), 
as.integer(ms), 
as.integer(NumCat), 
as.integer(k), 
as.integer(l), 
as.integer(DebugLogFile), 
as.double(da), 
as.double(ce), 
as.double(auc), 
as.double(var_auc), 
as.double(vc_cutoffs), 
as.double(logl), 
as.integer(error), 
as.double(varcov)) 
 
Pseudocode call 
 
function_name(mn, ms, num_categ, catn_in, cats_in, idebug,  
                       d_a_par, c_par, auc, variance_auc, vc_cutoffs_out, 
log_like, ierror,  
                       cov_out, hessian_out) 
 
integer, intent(in):: mn ! number of actually negative cases 
integer, intent(in):: ms ! number of actually positive cases 
integer, intent(in) :: num_categ ! Number of categories as created by catgrz 
integer, dimension(num_categ), intent(in):: catn_in, cats_in ! arrays containing 
categorical data 
integer, intent(in) :: idebug               ! 0 = no debug; 1  = debug 
double,intent(out)                        :: d_a_par, c_par ! MLE of the 
parameters 
double,intent(out)                        :: auc ! AUC, area under the curve 
double,intent(out)                        :: variance_auc ! estimated variance of 
AUC 
 



double, dimension(num_categ-1), intent(out) :: vc_cutoffs_out  ! cutoff parameter 
values at the maximum found 
double, intent(out)                       :: log_like ! value of the log 
likelihood function at the final point 
integer, intent(out)                                   :: ierror ! Error flag 
about the MLE fit 
! Note that the error values are set in this routine, or initialize_d_a_c so if 
their numbers have 
! to be changed, they have to be changed here, the rest of the subroutines use 
their own numbering 
! specific per routine. Look above for the different meaning. Not only 0 is 
successful fit 
double, dimension(num_categ+1,num_categ+1), intent(out)  :: cov_out ! these are 
used because the number 
double, dimension(num_categ+1,num_categ+1), intent(out), optional  :: hessian_out 
! of categories can be  
     ! different inside proproc because of collapsing. Note that only the reduced 
hessian will be returned, the 
     ! rest will be set to garbage 
  
##################################################################################
####################################################### 
NON-PARAMETRIC ESTIMATION OF AUC (also known as Wilcoxon statistic, trapezoidal 
AUC, empirical AUC, Mann-Whitney form of the WIlcoxon Statistic, U-statistic ... 
##################################################################################
####################################################### 
Here is the description of  how to call some of the available methods, their 
description can be found in 
Gallas BD, Pesce LL, editors. Comparison of ROC methods for partially paired 
data2009: SPIE 
 
mn, integer, number of actually-negative cases 
ms, integer, number of actually-positive cases 
AP, real, actually positive cases values 
AN, real, actually negative cases values 
AUC, real, ouput, area under the ROC curve or trapezoidal AUC, or Wilcoxon 
statistics, or ...  
VarAUC, real, output, variance of the AUC 
 
Call from R: 
.C("__roc_nonparametric__delonganddelong", as.integer(mn),as.integer(ms), 
as.integer(1),as.double(AN), as.double(AP), as.double(AUC), as.double(VarAUC)) 
 
Other calls are possible when multiple modalities are present and  for partially 
paired data (meaning that not all cases are in common 
between modalities) 
 
For those: 
num_mod, integer, the number of modalities 
DES_AN[ 1:mn,1:num_mod], integer,  design matrix,  basically an array with 1 when 
a case is present in a modality and a 0 otherwise 
DES_AP[ 1:ms,1:num_mod], integer,  design matrix,  basically an array with 1 when 
a case is present in a modality and a 0 otherwise 
 
wilc <- matrix(0,ncol= 1,nrow= num_mod ), output, array of U-statistic vallues 
wilc_var <- matrix(0,ncol= num_mod,nrow= num_mod ), output, variance-covariance 
matrix of the array of U-statistics 
 



 
 Boostrap based method, see above.  
 the last number, 100, it is the number of bootstrap samples. if it is 100, it is 
a little too small.  
C("__roc_nonparametric_MOD_gandpboot", as.integer(mn),as.integer(ms), 
as.integer(num_mod),as.double(AN), as.double(AP),as.integer(DES_AN), 
as.integer(DES_AP), as.double(wilc), as.double(wilc_var),as.integer(100)) 
 
One shot method based on moments, by B Gallas, see above 
 .C("__roc_nonparametric_MOD_m_mod_one_shot", as.integer(mn),as.integer(ms), 
as.integer(num_mod),as.double(AN), as.double(AP),as.integer(DES_AN), 
as.integer(DES_AP), as.double(wilc), as.double(wilc_var)) 
 
Wilcoxon statistic based method 
.C("__roc_nonparametric_MOD_zhouandgatsonis", as.integer(mn),as.integer(ms), 
as.integer(num_mod),as.double(AN), as.double(AP),as.integer(DES_AN), 
as.integer(DES_AP), as.double(wilc), as.double(wilc_car)) 
 
 
can still call also DeLong and DeLong but only if the data is fully-paired 
.C("__roc_nonparametric_MOD_delonganddelong", as.integer(mn),as.integer(ms), 
as.integer(num_mod),as.double(AN), as.double(AP), as.double(wilc), 
as.double(wilc_se)) 
 
Pseudocode call, example with the bootstrap routine because it is the simplest 
 WARNING: the variance covariance matrix has in the i>=j elements the variance 
covariance matrix and in the i< j elements 
         it will have the Var{U_i - U_j). This is done to have a more stable 
estimate of that variance as opposed to  
         Var{i} + var{j} - 2*cov{i,j}, this is not true for the other routines 
 
gandpboot(mn, ms, num_mod, act_neg, act_pos, des_neg, des_pos, U_vec , U_vec_cov, 
n_boot) 
 
integer, intent(IN):: num_mod ! number of modalities or treatments analized. 
integer, intent(IN):: mn ! total number of distinct negative cases (i.e., every 
case that has a value for at least one of 
                         ! the num_mod modalities) 
integer, intent(IN):: ms ! total number of distinct positive cases (i.e., every 
case that has a value for at least one of 
                         ! the num_mod modalities) 
real(kind=double), dimension(mn,num_mod), intent(IN):: act_neg ! actually-negative 
input data for the two modalities to be analyzed 
real(kind=double), dimension(ms,num_mod), intent(IN):: act_pos ! actually-positive 
input data for the two modalities to be analyzed 
! Design matrices. Here we assume that if there are values different from 0 or 1, 
there is an input error (in general there are 
! algorithms that allow the use of different flags for the design matrix, for 
example to indicate clustering, however, ROCKIT 
! cannot make use of them and therefore will not accept them. 
integer, dimension(mn,num_mod), intent(IN):: des_neg ! actually-negative design 
matrix (whether a case is present (1) or absent (0) 
                                                ! for each the two modalities to 
be analyzed 
integer, dimension(ms,num_mod), intent(IN):: des_pos ! actually-positive design 
matrix (whether a case is present (1) or absent (0) 
                                                ! for each the two modalities to 
be analyzed<E7> 



Real(kind=double),dimension(num_mod), intent(out):: U_vec    ! Array of Wilcoxon 
statistics, one per treatment 
real(kind=double),dimension(num_mod,num_mod), intent(out):: U_vec_cov ! Variance-
covariance matrix of the U_vec in the i>=j  
                                                                 ! elements the 
variance covariance matrix and in the i< j elements 
                                                                 ! it will have 
the Var{U_i - U_j). This is done to  
                                                                 ! have a more 
stable estimate of that variance as opposed to  
                                                                 ! Var{i} + var{j} 
- 2*cov{i,j} 
integer, intent(IN):: n_boot ! number of bootstrap sets 


